
C++ Programming:

From Problem Analysis

to Program Design, Fourth Edition

Chapter 4: Control Structures I (Selection)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 2

Objectives

In this chapter, you will:

• Learn about control structures

• Examine relational and logical operators

• Explore how to form and evaluate logical

(Boolean) expressions

• Discover how to use the selection control
structures if, if...else, and switch in a

program

• Learn to use the assert function to terminate a

program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 3

Control Structures

• A computer can proceed:

− In sequence

− Selectively (branch) - making a choice

− Repetitively (iteratively) - looping

• Some statements are executed only if certain

conditions are met

• A condition is met if it evaluates to true

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 4

Control Structures (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 5

Relational Operators

• A condition is represented by a logical
(Boolean) expression that can be true or

false

• Relational operators:

− Allow comparisons

− Require two operands (binary)

− Evaluate to true or false

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 6

Relational Operators (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 7

Relational Operators and Simple

Data Types

• You can use the relational operators with all

three simple data types:

− 8 < 15 evaluates to true

− 6 != 6 evaluates to false

− 2.5 > 5.8 evaluates to false

− 5.9 <= 7.5 evaluates to true

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 8

Comparing Characters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 9

Relational Operators and the

string Type

• Relational operators can be applied to strings

• Strings are compared character by character,

starting with the first character

• Comparison continues until either a mismatch

is found or all characters are found equal

• If two strings of different lengths are compared

and the comparison is equal to the last

character of the shorter string

− The shorter string is less than the larger string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 10

Relational Operators and the

string Type (continued)

• Suppose we have the following declarations:

string str1 = "Hello";

string str2 = "Hi";

string str3 = "Air";

string str4 = "Bill";

string str4 = "Big";

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 11

Relational Operators and the

string Type (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 12

Relational Operators and the

string Type (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 13

Relational Operators and the

string Type (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 14

Logical (Boolean) Operators and

Logical Expressions

• Logical (Boolean) operators enable you to

combine logical expressions

unary

binary

binary

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 15

Logical (Boolean) Operators and

Logical Expressions (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 18

Order of Precedence

• Relational and logical operators are

evaluated from left to right

• The associativity is left to right

• Parentheses can override precedence

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 19

Order of Precedence (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 20

Order of Precedence (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 21

Order of Precedence (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 22

Order of Precedence (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 23

Short-Circuit Evaluation

• Short-circuit evaluation: evaluation of a logical

expression stops as soon as the value of the

expression is known

• Example:

(age >= 21) || (x == 5) //Line 1

(grade == 'A') && (x >= 7) //Line 2

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 24

int Data Type and Logical

(Boolean) Expressions

• Earlier versions of C++ did not provide built-in

data types that had Boolean values

• Logical expressions evaluate to either 1 or 0

− The value of a logical expression was stored
in a variable of the data type int

• You can use the int data type to manipulate

logical (Boolean) expressions

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 25

The bool Data Type and Logical

(Boolean) Expressions

• The data type bool has logical (Boolean)

values true and false

• bool, true, and false are reserved words

• The identifier true has the value 1

• The identifier false has the value 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 26

Logical (Boolean) Expressions

• Logical expressions can be unpredictable

• The following expression appears to
represent a comparison of 0, num, and 10:

0 <= num <= 10

• It always evaluates to true because 0 <=

num evaluates to either 0 or 1, and 0 <= 10

is true and 1 <= 10 is true

• A correct way to write this expression is:

0 <= num && num <= 10

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 27

Selection: if and if...else

• One-Way Selection

• Two-Way Selection

• Compound (Block of) Statements

• Multiple Selections: Nested if

• Comparing if...else Statements with a

Series of if Statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 28

Selection: if and if...else

(continued)

• Using Pseudocode to Develop, Test, and

Debug a Program

• Input Failure and the if Statement

• Confusion Between the Equality Operator

(==) and the Assignment Operator (=)

• Conditional Operator (?:)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 29

One-Way Selection

• The syntax of one-way selection is:

• The statement is executed if the value of the
expression is true

• The statement is bypassed if the value is
false; program goes to the next statement

• if is a reserved word

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 30

One-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 31

One-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 33

One-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 34

Two-Way Selection

• Two-way selection takes the form:

• If expression is true, statement1 is

executed; otherwise, statement2 is

executed

− statement1 and statement2 are any C++

statements

• else is a reserved word

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 35

Two-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 36

Two-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 37

Two-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 38

Compound (Block of) Statement

• Compound statement (block of statements):

• A compound statement is a single statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 39

Compound (Block of) Statement

(continued)

if (age > 18)

{

cout << "Eligible to vote." << endl;

cout << "No longer a minor." << endl;

}

else

{

cout << "Not eligible to vote." << endl;

cout << "Still a minor." << endl;

}

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 40

Multiple Selections: Nested if

• Nesting: one control statement in another

• An else is associated with the most recent

if that has not been paired with an else

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 42

Multiple Selections: Nested if

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 43

Comparing if…else Statements

with a Series of if Statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 44

Using Pseudocode to Develop,

Test, and Debug a Program

• Pseudocode (pseudo): provides a useful

means to outline and refine a program before

putting it into formal C++ code

• You must first develop a program using paper

and pencil

• On paper, it is easier to spot errors and

improve the program

− Especially with large programs

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 45

Input Failure and the if Statement

• If input stream enters a fail state

− All subsequent input statements associated

with that stream are ignored

− Program continues to execute

− May produce erroneous results

• Can use if statements to check status of

input stream

• If stream enters the fail state, include

instructions that stop program execution

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 46

Confusion Between == and =

• C++ allows you to use any expression that
can be evaluated to either true or false as

an expression in the if statement:

if (x = 5)

cout << "The value is five." << endl;

• The appearance of = in place of ==

resembles a silent killer

− It is not a syntax error

− It is a logical error

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 47

Conditional Operator (?:)

• Conditional operator (?:) takes three arguments

− Ternary operator

• Syntax for using the conditional operator:

expression1 ? expression2 : expression3

• If expression1 is true, the result of the

conditional expression is expression2

− Otherwise, the result is expression3

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 48

switch Structures

• switch structure: alternate
to if-else

• switch (integral)
expression is evaluated first

• Value of the expression
determines which
corresponding action is
taken

• Expression is sometimes
called the selector

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 50

switch Structures (continued)

• One or more statements may follow a case

label

• Braces are not needed to turn multiple

statements into a single compound statement

• The break statement may or may not appear

after each statement

• switch, case, break, and default are

reserved words

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 52

Terminating a Program with the

assert Function

• Certain types of errors that are very difficult to

catch can occur in a program

− Example: division by zero can be difficult to

catch using any of the programming

techniques examined so far

• The predefined function, assert, is useful in

stopping program execution when certain

elusive errors occur

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 53

The assert Function (continued)

• Syntax:

expression is any logical expression

• If expression evaluates to true, the next
statement executes

• If expression evaluates to false, the
program terminates and indicates where in
the program the error occurred

• To use assert, include cassert header file

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 54

The assert Function (continued)

• assert is useful for enforcing programming

constraints during program development

• After developing and testing a program,

remove or disable assert statements

• The preprocessor directive #define

NDEBUG must be placed before the directive

#include <cassert> to disable the assert

statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 55

Programming Example: Cable

Company Billing

• This programming example calculates a

customer’s bill for a local cable company

• There are two types of customers:

− Residential

− Business

• Two rates for calculating a cable bill:

− One for residential customers

− One for business customers

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 56

Programming Example: Rates

• For residential customer:
− Bill processing fee: $4.50

− Basic service fee: $20.50

− Premium channel: $7.50 per channel

• For business customer:
− Bill processing fee: $15.00

− Basic service fee: $75.00 for first 10

connections and $5.00 for each additional

connection

− Premium channel cost: $50.00 per channel for

any number of connections

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 57

Programming Example:

Requirements

• Ask user for account number and customer

code

• Assume R or r stands for residential

customer and B or b stands for business

customer

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 58

Programming Example: Input and

Output

• Input:

− Customer account number

− Customer code

− Number of premium channels

− For business customers, number of basic

service connections

• Output:

− Customer’s account number

− Billing amount

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 59

Programming Example: Program

Analysis

• Purpose: calculate and print billing amount

• Calculating billing amount requires:

− Customer for whom the billing amount is

calculated (residential or business)

− Number of premium channels to which the

customer subscribes

• For a business customer, you need:

− Number of basic service connections

− Number of premium channels

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 60

Programming Example: Program

Analysis (continued)

• Data needed to calculate the bill, such as bill

processing fees and the cost of a premium

channel, are known quantities

• The program should print the billing amount

to two decimal places

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 61

Programming Example: Algorithm

Design

• Set precision to two decimal places

• Prompt user for account number and
customer type

• If customer type is R or r

− Prompt user for number of premium channels

− Compute and print the bill

• If customer type is B or b

− Prompt user for number of basic service
connections and number of premium channels

− Compute and print the bill

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 62

Programming Example: Variables

and Named Constants

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 63

Programming Example: Formulas

Billing for residential customers:

amountDue = RES_BILL_PROC_FEES +

RES_BASIC_SERV_COST

+ numOfPremChannels *

RES_COST_PREM_CHANNEL;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 64

Programming Example: Formulas

(continued)

Billing for business customers:

if (numOfBasicServConn <= 10)

amountDue = BUS_BILL_PROC_FEES +

BUS_BASIC_SERV_COST

+ numOfPremChannels *

BUS_COST_PREM_CHANNEL;

else

amountDue = BUS_BILL_PROC_FEES +

BUS_BASIC_SERV_COST

+ (numOfBasicServConn - 10)

* BUS_BASIC_CONN_COST

+ numOfPremChannels *

BUS_COST_PREM_CHANNEL;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 65

Programming Example: Main

Algorithm

1. Output floating-point numbers in fixed

decimal with decimal point and trailing zeros

• Output floating-point numbers with two

decimal places and set the precision to two

decimal places

2. Prompt user to enter account number

3. Get customer account number

4. Prompt user to enter customer code

5. Get customer code

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 66

Programming Example: Main

Algorithm (continued)

6. If the customer code is r or R,

− Prompt user to enter number of premium

channels

− Get the number of premium channels

− Calculate the billing amount

− Print account number and billing amount

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 67

Programming Example: Main

Algorithm (continued)

7. If customer code is b or B,

− Prompt user to enter number of basic service

connections

− Get number of basic service connections

− Prompt user to enter number of premium

channels

− Get number of premium channels

− Calculate billing amount

− Print account number and billing amount

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 68

Programming Example: Main

Algorithm (continued)

8. If customer code is other than r, R, b, or B,

output an error message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 69

Summary

• Control structures alter normal control flow

• Most common control structures are selection

and repetition

• Relational operators: ==, <, <=, >, >=, !=

• Logical expressions evaluate to 1 (true) or 0

(false)

• Logical operators: ! (not), && (and), || (or)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 70

Summary (continued)

• Two selection structures: one-way selection

and two-way selection

• The expression in an if or if...else

structure is usually a logical expression

• No stand-alone else statement in C++

− Every else has a related if

• A sequence of statements enclosed between
braces, { and }, is called a compound

statement or block of statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 71

Summary (continued)

• Using assignment in place of the equality

operator creates a semantic error

• switch structure handles multiway selection

• break statement ends switch statement

• Use assert to terminate a program if certain

conditions are not met

